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Abstract

Estimating the pose of a camera (virtual or real)
in which some augmentation takes place is one of
the most important parts of an augmented reality
(AR) system. Availability of powerful processors
and fast frame grabbers have made vision-based
trackers commonly used due to their accuracy as
well as flexibility and ease of use.

Current wvision-based trackers are based on
tracking of markers. The use of markers in-
creases robustness and reduces computational re-
quirements. However, their use can be very com-
plicated, as they require certain maintenance. Di-
rect use of scene features for tracking, therefore, is
desirable. To this end, we describe a general sys-
tem that tracks the position and orientation of a
camera observing a scene without any visual mark-
ers. Our method is based on a two-stage process.
In the first stage, a set of features is learned with
the help of an external tracking system while in
action. The second stage uses these learned fea-
tures for camera tracking when the system in the
first stage decides that it is possible to do so. The
system is very general so that it can employ any
available feature tracking and pose estimation sys-
tem for learning and tracking. We experimentally
demonstrate the viability of the method in real-life
examples.

1 Introduction

Augmented reality (AR) is a technology in
which a user’s perception of the real world is
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enhanced with additional information generated
from a computer model. The visual enhancements
may include labels, three-dimensional rendered
models, and shading and illumination changes.
AR allows a user to work with and examine the
physical world, while receiving additional informa-
tion about the objects in it through a display.

In a typical AR system, a user’s view of a real
scene is augmented with graphics. The graphics
are generated from geometric models of both vir-
tual objects and real objects in the environment.
In order for the graphics and the scene to align
properly, the pose and optical properties of the
real and virtual cameras must be the same.

Estimating the pose of the camera (virtual or
real), in which some augmentation takes place,
is the most important part of an AR system.
This estimation process is usually called tracking.
Many different tracking methods are available (see
[7, [14], 2] for review of tracking systems for aug-
mented reality and [4] for a review of tracking sys-
tems in general) including mechanical, magnetic,
ultrasound, inertial, vision-based, and hybrid sys-
tems that try to combine the advantages of two or
more technologies.

Availability of powerful processors and fast
frame grabbers have made vision-based trackers

Virtual and augmented reality (VR and AR) re-
search communities use the term ”tracking” in a differ-
ent context than the computer vision community. ” Track-
ing” in AR and VR refers to determining the pose, i.e.,
three-dimensional position and orientation, of the camera.
”Tracking” in computer vision means data association, also
called matching or correspondence, between consecutive
frames in an image sequence.
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a common choice amongst many other technolo-
gies mostly due to their accuracy as well as flex-
ibility and ease of use. Although very elabo-
rate object tracking techniques exist in computer
vision (e.g., [B] provides fast and robust object
tracking in video streams), they are not practi-
cal for pose estimation. The vision-based track-
ers used in AR are based on tracking of markers
(see [15, 111, 26]). The use of markers increases ro-
bustness and reduces computational requirements.
However, their use can be complicated as they re-
quire certain maintenance. For example, placing a
marker in the workspace of the user can be intru-
sive and the markers can from time to time need
re-calibration.

Direct use of scene features for tracking instead
of the markers is much desirable, especially when
certain parts of the workspace do not change in
time. For example, a control panel has fixed but-
tons and knobs that remain the same over its life-
time. The use of these rigid and unchanging fea-
tures for tracking simplifies the preparation of the
scenarios for scene augmentation as well.

Attempts in the past at solving this problem
remained limited in their aims. They are some-
times used for increasing the accuracy and the
range of the tracking in the presence of a marker
based tracking system or in combination with
other tracking modalities (hybrid systems).

We describe a general system that tracks the
position and orientation of a camera observing a
scene without any visual markers. The method is
based on a two-stage process. In the first stage, a
set of features is learned with the help of an exter-
nal tracking system while in action. The second
stage uses these learned features for camera track-
ing when the system in the first stage decides that
it is possible to do so.

This paper is organized as follows. Section[2de-
scribes the problem we are addressing and states
the related work. While Section Bl gives the de-
tails of the proposed method, Section M describes
the system built for experiments whose results are
given in Section Bl Summary and conclusions are
provided in Section [6l
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2 Background

We define the tracking problem for AR as the
task of estimating the 6 DOF pose of an object,
e.g., the head-mounted display, in a given coor-
dinate system. This differs from the computer vi-
sion problem of tracking objects in video sequences
which can be described as data association be-
tween consecutive frames.

Many tracking technologies have been used in
AR applications. These include mechanical [23],
magnetic [12], ultrasound, inertial, vision-based
and hybrid trackers. Vision-based trackers come
in many different forms. Some of these uses a mo-
bile camera to track a set of markers in the visible
spectrum [I5] 111, 26], and some tracks retroreflec-
tive markers in the infrared spectrum [I8]. More
involved systems use stationary cameras to track
markers attached to objects, e.g., POLARIS. Hy-
brid systems [21], 3 [I] try to combine the advan-
tages of different tracking modalities.

Attempts to use scene features other than spe-
cially designed markers have been made in the
literature. Most of these were limited to either
increasing the accuracy of other tracking meth-
ods or to extend the range of tracking [17, [16].
[20] discusses a tracking system that looks for pla-
nar structures in the scene. Other methods that
are based on image matching techniques have also
been proposed [22].

Work in computer vision has yielded very fast
and robust methods for object tracking (e.g., [5]).
However, none of these is particularly useful for ac-
curate pose estimation required by most AR appli-
cations. Pose estimation requires a match between
a three-dimensional model and its image [6]. Ob-
ject tracking does not necessarily provide such a
match between the model and its image. Instead,
it provides a match between the consecutive views
of the object.

The method, proposed in this paper, suggests
a general method for feature-based pose estima-
tion in video streams. It differs from the exist-
ing methods in several ways. First, the proposed
method is a two stage process. The system first
learns and builds a model of the scene using off the
shelve pose and feature tracking methods. After
this learning process, tracking for pose is achieved
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by tracking these learned features.

The second difference is attributed to the way
the first stage (training or learning) works. The
outcome of the learning process is a set of three-
dimensional features with some associated uncer-
tainties. This is not achieved by a structure-from-
motion but a triangulation or bundle adjustment
process. Therefore, it yields more stable and ro-
bust features that can be used for accurate pose
estimation.

Finally, an advantage of our method over the
model based ones is that it can use features on
the textures and highlights. These are not very
easy to model even if a three-dimensional model of
the workspace is available. More importantly, the
details of the model may not be particularly suited
for the application at hand. Our method builds an
implicit model using only the most salient features
observable in the given context.

External Pose Estimation
(e.g., marker-based)

b

Set of Feature Correspondences

3D Reconstruction
Bundle Adjustment

Filtering/Rank Ordering

A

Compare and Iterate

Acceptable Results

3D Features+Covariances|

Figure 1: The learning or training phase of the
proposed system is depicted. This phase con-
tains three subsystems, i) an external tracker (the
shaded region labeled “a”), ii) a feature extractor
and tracker (the shaded region labeled “b”), and
iii) the trainer (the shaded region labeled “c”).
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3 System Definition

The proposed vision-based marker-less tracking
system aims at the use of real scene features for
estimating the pose of a camera. The solution al-
lows the user to move from using markers or any
applicable tracking and pose estimation methods
to using real scene features through an automatic
process. This process increases the success of the
overall registration accuracy for the AR applica-
tion. The basic idea is to first use the markers or
any applicable tracking device for pose and mo-
tion estimation. The user could start using the
system in his or her usual environment. As the
user works with the current system an automated
process runs in the background. This process re-
mains hidden until the feature-based system de-
cides to take over the pose estimation task from
the other tracker. The take over happens only af-
ter enough number of salient features are learned
and the pose obtained from these are as good as
the one provided by the external tracker. The au-
tomated process has two phases, i.e., (i) learning,
and (ii) tracking for pose estimation.

3.1 Learning

For a vision-based tracking system, a model is
needed which is matched against the images for
estimating the pose of the camera taking the im-
ages. In the proposed method, we use an auto-
mated process to learn the underlying model of
the workspace where the tracking is to take place.

The general idea of learning or training is pre-
sented in Figure[ll While the AR system together
with another tracking system is in use, the system
uses any available feature extraction and track-
ing methods to detect reliable features?. These
may include basic features such points, lines, cir-
cles and planar patches or composite features such
as polygons, cylinders etc. The system tracks each
feature in the video stream. Once a feature is rea-
sonably tracked over a number of frames, the sys-
tem uses the 6 DOF pose provided by the existing
tracking system to obtain a 3D model for this par-
ticular feature. At this point the feature tracking,

2Depending on the performance of the system, this can
be done in real time or on recorded videos along with the
pose as provided by the external tracker system.
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for this particular feature, becomes a mixed 2D-
2D and 3D-2D matching and bundle adjustment
problem. The system evaluates each set of fea-
ture correspondences in order to define whether
this feature is a stable one, which means that:

e Over time the 3D feature does not move inde-
pendently from the observer (i.e., static posi-
tion in the world coordinate system),

e The distribution of the intensity character-
istics of the feature does not change signifi-
cantly over time,

e The feature is robust enough that the system
could find the right detection algorithm to ex-
tract it under the normal changes in lighting
conditions (i.e., changes which normally oc-
cur in the workspace),

e The feature is reconstructed and back-
projected, using the motion estimated by
the external tracker, with acceptable back-
projection error,

e The subset of the stable features chosen need
to allow accurate localization, compared to
the ground truth from the external tracker.

3.2 Tracking for Pose Estimation

Once a model is available, the marker-less track-
ing system uses the available feature extractors
and trackers to extract features and match them
against the model for the initial frame and then
track them over consecutive frames in the stream.
This process is depicted in Figure 2l

Once the tracking system has been initialized,
i.e., the pose for the current frame is known ap-
proximately, it can estimate the pose for consecu-
tive frames. This estimation is very fast and ro-
bust since it uses the same feature-tracking engine
as in training and under similar working condi-
tions.

Initial model matching can be done by an object
recognition system. This task does not need to be
real-time, i.e., a recognition system that can detect
the presence of an object with less than 1fps speed
can be used. Due to the fact that the environment
is very restricted, the recognition system can be
engineered for speed and performance.
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Figure 2: The tracking process in the proposed
system is depicted. Similar to training, this phase
contains two subsystems, i) a feature extractor,
and ii) the marker-less tracker.

4 Implementation

We have implemented the system described in
the previous section. The system consists of (i)
an external tracker, (i) a feature tracker, (iii) a
model builder, (iv) a pose estimator, and (v) an
augmentation engine. This section describes the
details of our implementation and the choices that
we have made.

External Tracker: We have used the marker-
based tracking system® described in [26]. This
tracker returns 8 point features per marker. Once
calibrated in 3D, these points are used to compute
the 6 DOF pose for the camera (Tsai [25]).

3In this particular implementation, the same images
coming from the tracker camera are used both by the exter-
nal tracker and the learning system. This readily solves the
synchronization issue between the camera and the external
tracker.
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Feauture Tracker: For simplicity, our system
only considers point features in tracking. For this,
a pyramidal implementation of Lucas-Kanade al-
gorithm [I3] is used (with the pyramid depth as
3 and the search window of the optical flow as
10x10). The tracked features are initially selected
with the Shi-Tomasi algorithm [19].

Model Building: Using the points tracked by
the system and the pose provided by the external
tracker, the system performs an initial reconstruc-
tion of the 3D positions of these points using tri-
angulation [I0]. A RANSAC type of process [§] is
implemented to eliminate points and frames that
may be outliers. This is followed by a bundle ad-
justment process (see [24] for a recent review of
bundle adjustment) allowing a better estimate of
the point locations as well as their uncertainties.
This uses a selected number of frames to process.

Pose Estimation: Given the 2D-3D point
matches, the pose of the camera is computed using
the algorithm by Tsai [25]. An internal calibration
is performed for the camera before the training to
account for radial distortion up to 6th degree.

Augmentation Engine: In order to show the re-
sults, we have implemented a display engine which
overlays line segments representing the virtual ob-
jects in wire-frame. Each line is represented by its
two end points. After the two endpoints of a line
are projected, a line connecting the two projected
point is drawn on the image. In the presence of
radial distortion, this will present a one-to-one reg-
istration between the vertices of the virtual model
and their images. However, the virtual line and
the image of the corresponding line will not match.
One can correct the distortion in the image so that
the virtual line matches exactly with the real one.
Yet, since one of the aim of the augmentation en-
gine is to visually demonstrate how good the pose
is with respect to the image quality, no radial dis-
tortion correction in the image is performed.

5 Experiments

We have conducted extensive experiments to
validate our method on real data sets. This sec-
tion provides the details of these experiments and
the results.

The first set of experiments test the learning
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or training part of the system. We have used a
Sony™ DV camera and obtained several sets of
video sequences of our workspace where tracking
is to take place. Our workspace (see Figure B]) in-
cludes a cabinet and a control panel. Each video
sequence is captured under the real working con-
ditions of the target AR application.

Figure 3: The experimental workspace including
a control panel and a cabinet where the tracking
is to take place.

We have used a marker-based tracker as the ex-
ternal tracker. The external tracker provides the
ground truth tracking information to the learning
system. In particular, we have used the mark-
ers described in [26]. A set of these markers are
placed in the workspace (see Figure d]). They are
then calibrated using a photogrammetry process
with high resolution digital pictures.

Once the markers are calibrated, i.e., their posi-
tions are calculated, all of the cameras used in the
experiments are internally calibrated using these
markers. We use Tsai’s method [25] to allow radial
distortion correction up to 6th degree, which en-
sures a very good pose estimation for the camera
when the right correspondences are provided.

As explained earlier, while the external tracking
provides the AR system with the 6 DOF pose, the

© Siemens Corporate Research



Figure 4: The placement of the markers in the
workspace provides ground truth pose for the
learning process. The marker positions are cal-
ibrated using photogrammetry techniques with
high resolution images. The system starts with
a dense set of markers for a good calibration. The
markers are then removed while the system learns
more and more features for marker-less tracking.

learning process extracts and tracks features in the
video stream and reconstructs the position of the
corresponding scene features. The 3D position is
computed using the pose provided by the exter-
nal tracker. The system lets the user to choose
a certain portion of the image. The scene fea-
tures only in the corresponding region are recon-
structed. The rest of the process is automated.
Figure [B] shows the initial frame and tracked fea-
tures on a later frame in the video.

Figure 5: Training takes place with the help of a
marker-based tracker and a feature tracker. The
system lets the user to select a portion of the scene
in the image. The underlying model of this region
is reconstructed along with its uncertainty.

Figure [6] shows some example results from the
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learning process. After tracking a set of features
in about 100 frames, the system yields to a set of
reconstructed 3D points. Two views of the com-
bined set of the 3D points are displayed in this
figure. In order to provide a reference, three wire-
frame boxes are inserted in the scene, which are
placed on the two faces of the panel.

1600
1500
1400
1300

1200

1600 —

1500 —

1400 —

1300 —

1200 —

1100 —

1000 —

Figure 6: Sample results from the training process.
Two 3D views of the reconstructed 3D points are
shown along with three wire-frame boxes as ref-
erence. See Figures for a superimposition of
these on to the images of the panel.

In order to quantify the reconstruction power
of our learning process, we have grouped the
learned feature points into two major coplanar
sets. Within each coplanar sets, the deviation
from planarity is measured. In each case, less than
3% deviation is observed compared to the largest
size of the panel surface. Since the motion in the
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training video was mostly frontal, the largest vari-
ation was observed in the z-coordinate of the point
(for reference, we take the upper panel surface as
the xy-plane).

After the system has learned enough salient fea-
tures, marker-less tracking is started. To test the
accuracy and robustness of the tracking part of
our system, we have conducted three major ex-
periments. In all of these experiments we have
assumed that the pose for the first frame of the
sequence where the tracking is to take place is
known. In most of these experiments, we let
a RANSAC type of process determine the cor-
respondences for the initial pose estimation. In
some cases, we set the correspondences for the first
frame by hand. In all cases, only three point corre-
spondences are needed to estimate the initial pose
using the three-point algorithm described in [9].

The first experiment is designed to measure the
effect of the accuracy of the initial estimate of
the pose on the marker-less tracking method. For
this, we have run our tracker on a video sequence
of about 600 frames where the pose for the first
frame is computed using the markers in the scene.
We then perturbed the pose of the first frame by
about 10% for each dimension (3 components of
the translation, and 3 components of the rotation
as represented by the Euler angles). We ran our
tracker using this initial pose on the same video
sequence. The left column in Figure [ shows the
exact pose for the first frame, and tracking re-
sults for the consecutive frames. The right column
shows the perturbed pose for the first frame and
the tracking results in the consecutive frames. As
can be seen from these results, even when start-
ing with a wrong pose, the feature-based track-
ing algorithm converges to the same “good” pose
that is estimated using the correct pose for the
first frame. Similar results were obtained on other
video sequences as long as 1800 frames.

The second set of experiments is conducted to
see if tracking can be achieved using cameras other
than the one used in training. Figure [§] shows the
results obtained using a Sony™ XC55BB black-
and-white camera. This camera is internally cal-
ibrated as explained above. We obtained more
than 5 video sequences using this camera (on
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Figure 7: Tracking results using the exact (left col-
umn) and perturbed (right column) initial pose for
the first frame in the sequence of 600 frames. The
estimated pose is used to superimpose the wire-
frame boxes in the images. Note that the visible
markers are not used during tracking. Only the
learned features are used in the context of marker-
less tracking. See the text for details.
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the average about 1000 frames with considerable
change in the view points). After initialization of
the pose for the first frame, we let our marker-less
tracker track the learned features. Some sample
results are shown in Figure 8 Even with a very
different tracker and learning camera, the system
yields very good pose during tracking. High radial
distortion due to larger field-of-view does not ef-
fect the accuracy and performance of the marker-
less tracking system.

Figure 8: Tracking results using a black and white
CCD camera. This camera is completely different
from the one used for training the system. Even
with very low image quality in black-and-white,
the tracker still works very well.

The last set of experiments is conducted to
show that the tracking and pose estimation is
quite robust even in the presence of the non-
rigid moving objects occluding the learned fea-
tures. Figure [0 shows the superimposition of the
wire-frame boxes using the pose obtained from the
marker-less tracker for different frames in a video
stream. The tracker is quite robust against occlu-
sions caused by both rigid and non-rigid objects.

Finally, we provide some results of running time
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Figure 9: Tracking results when a non-rigid object
occludes the trained features.

Figure 10: Tracking results for another object us-
ing the Sony™ DV camera.
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performance of our method. We have run the
learning part of our system off-line. This process is
very computationally intensive and does not need
to be on-line. The marker-less tracking part of our
system runs close to full frame rate (about 22fps)
on a 2GHz Intel Pentium™ III processor. This is
achieved when a 640x 480 video stream is captured
from a black-and-white camera through an off-the-
shelf frame grabber, e.g., FALCON™ from IDS.
When a lower resolution video stream is tracked,
e.g., 320 x 240, the frame rate goes well over 30fps.
The processing time may increase slightly depend-
ing on the size of the learned-feature set.

6 Conclusions

We have presented a complete system that can
track in real-time the position and orientation of a
camera observing a scene. The system first learns
the scene structure by utilizing an external track-
ing system, e.g., a marker-based tracker or a mag-
netic tracker. This training step results in an im-
plicit model of the three-dimensional scene. This
model includes the scene coordinates of salient
features as well as their uncertainties. Once the
model is learned, the system computes the pose
of the camera observing the scene in real-time.
Feature tracking is done by utilizing any available
module that tracks features such as corners.

Experimental results showed that the method is
quite robust even in the presence of moving non-
rigid objects occluding the actual scene. More-
over, with an off the shelf computer, the tracking
and pose estimation can be done in real time, i.e.,
30fps.

Our plans for future work include incorporat-
ing this tracking system with a recognition sys-
tem which can estimate an initial pose. A slower
(about 1fps) process for approximate pose deter-
mination can be used to re-initialize the tracking
system to recover the tracker when it fails.

Further improvements will be sought to improve
the real-time performance of the system which
may include processing lower resolution images.
At the learning side, other features such as lines
will be explored for tracking. We are also planning
to use our tracker on an optical see-through HMD
system for calibration as well as tracking.
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