
Message Passing for Soft Constraint Dual Decomposition

David Belanger
UMass Amherst

belanger@cs.umass.edu

Alexandre Passos
UMass Amherst

apassos@cs.umass.edu

Sebastian Riedel
University College London

s.riedel@ucl.ac.uk

Andrew McCallum
UMass Amherst

mccallum@cs.umass.edu

Abstract

Dual decomposition provides the opportunity to
build complex, yet tractable, structured predic-
tion models using linear constraints to link to-
gether submodels that have available MAP infer-
ence routines. However, since some constraints
might not hold on every single example, such
models can often be improved by relaxing the
requirement that these constraints always hold,
and instead replacing them with soft constraints
that merely impose a penalty if violated. A dual
objective for the resulting MAP inference prob-
lem differs from the hard constraint problem’s
associated dual decomposition objective only in
that the dual variables are subject to box con-
straints. This paper introduces a novel primal-
dual block coordinate descent algorithm for min-
imizing this general family of box-constrained
objectives. Through experiments on two nat-
ural language corpus-wide inference tasks, we
demonstrate the advantages of our approach over
the current alternative, based on copying vari-
ables, adding auxiliary submodels and using tra-
ditional dual decomposition. Our algorithm per-
forms inference in the same model as was previ-
ously published for these tasks, and thus is capa-
ble of achieving the same accuracy, but provides
a 2-10x speedup over the current state of the art.

1 INTRODUCTION

We often need complex structured prediction models that
encode rich global and local dependencies and constraints
among the outputs, but this can render efficient predic-
tion difficult. Therefore, dual decomposition is quite use-
ful, since it enables efficient inference in models composed
of various submodels with available black-box MAP infer-
ence routines (Komodakis et al., 2007; Sontag et al., 2011;
Rush & Collins, 2012).

In some cases, the flexibility and robustness of such models
can be improved by using soft constraints, where the model
imposes a cost if a constraint is violated, but does not re-
quire that it is satisfied. In natural language processing, for
example, soft constraints have enabled accuracy gains for
named entity recognition (Finkel et al., 2005; Sutton & Mc-
Callum, 2006), parsing (Smith & Eisner, 2008; Rush et al.,
2012), and citation field segmentation (Chang et al., 2012;
Anzaroot et al., 2014). Using soft constraints is reason-
able in these applications because the constraints are not
required in order to define feasible outputs, but are instead
a modeling layer imposed to improve predictive accuracy.
Soft constraints are advantageous over hard constraints be-
cause they allow the model to trade off evidence for and
against a constraint being satisfied.

In all of these examples besides Rush et al. (2012) and An-
zaroot et al. (2014), inference is performed using standard
techniques for inference in loopy graphical models such as
belief propagation or MCMC. However, these have poor
optimality guarantees and can also be difficult to general-
ize to prediction problems that are not graphical models.
An alternative method for handling soft constraints is to
make copies of variables participating in soft constraints,
constrain each variable to equal its copy, and apply dual de-
composition (Rush et al., 2012). While this exhibits better
flexibility, scalability, and guarantees, it requires inference
in auxiliary submodels and copying variables prevents the
feasibility of the output during intermediate iterations be-
fore convergence, since the two copies of a variable may
have different values.

Recently, Anzaroot et al. (2014) employed an attractive
alternative algorithm for performing MAP subject to soft
constraints that offers the optimality guarantees and gen-
erality of dual decomposition, but avoids variable copying
and auxiliary models completely. Their algorithm requires
an extremely straightforward modification to existing dual
decomposition objectives: if the model penalizes the viola-
tion of a constraint with a penalty of c, then the dual vari-
able is subject to a box constraint, where it can not exceed
c. They minimize this objective with projected subgradient



descent.

While this projected subgradient algorithm is simple, its
convergence can be slow and sensitive to a choice of step
size schedule. On the other hand, block coordinate de-
scent algorithms, such as MPLP (Globerson & Jaakkola,
2007), are parameter-free and often converge much faster
than subgradient descent for dual decomposition objec-
tives, subject to our ability to obtain max-marginals from
the subproblems (Sontag et al., 2011).

In response, we contribute the following:

1. An extension of the projected subgradient algorithm
of Anzaroot et al. (2014) to general pairwise soft con-
straints (Section 5) that are capable of modeling arbi-
trary pairwise graphical model factors (Section 8).

2. An adaptation of the MPLP algorithm beyond graph-
ical models to alternative structured prediction prob-
lems with certain structure (Section 6).

3. Box-MPLP, a primal-dual message passing algorithm
for solving the box-constrained dual decomposition
objective for soft constraints (Section 7). Its update
rule and derivation differ substantially from MPLP.

4. Experiments on two corpus-wide prediction tasks
from natural language processing (Section 2) demon-
strating both the advantages of using Box-MPLP
v.s. projected subgradient and of using a box-
constrained dual objective v.s. variable copying and
hard-constraint dual decomposition (Section 10).

2 CORPUS-WIDE INFERENCE

We first motivate the use of soft constraints by describing
the application that we will explore in our experiments.
In natural language processing, it is common to part-of-
speech (POS) tag and dependency parse every sentence in
a corpus of documents. Both tasks can be posed as effi-
cient MAP inference, but a drawback of these algorithms is
that they process each sentence in isolation, despite the fact
that there is discriminative information shared across the
corpus. In response, Rush et al. (2012) performed corpus-
wide inference. Specifically, for word types that did not
appear in the training data, they introduced global model
terms that encouraged every occurrence of the word in the
test corpus to receive the same POS tag, or to be assigned a
dependency parent with the same POS tag. A similar model
appeared in Chieu & Teow (2012).

Rush et al. (2012) model these cross-sentence relationships
among sets of occurrences that are encouraged to agree, by
introducing one consensus structure, described in the Fig-
ure 1 caption, per set. There is a soft constraint between
every variable at the bottom of the consensus set, and the
one at the top. If the underlying sentence-level models are
graphical models, the corpus-wide inference problem could
be posed as a large loopy graphical model and we can per-

Figure 1: One consensus set. The circles at the bottom
represent words of the same type, and the boxes represent
arbitrary sentence-level prediction problems that they are
contained in. The circle at the top is a consensus variable
introduced to encourage consensus among the bottom cir-
cles, where the squares are soft constraints penalizing dis-
agreement. The corpus is linked together by a web of con-
sensus structures.

Figure 2: The variable-copying version of Fig. 1, where
dashed lines denote equality constraints.

form approximate MAP using standard techniques. An al-
ternative solution, depicted in Figure 2, is to copy variables
that participate in consensus sets, introduce an auxiliary
tree-structured subproblem, and use dual decomposition
for corpus-wide MAP. This has superior optimality guar-
antees and flexibility to use sentence-level problems that
are not graphical models. In practice, this algorithm can
be slow to converge, however. In response, we introduce
a new approach for performing MAP subject to soft con-
straints that when applied to corpus-wide inference allows
us to work directly in the soft constraint problem of Fig-
ure 1, yet yields the same flexibility and optimality guaran-
tees as Rush et al. (2012) and substantially faster runtimes.
The techniques are general and apply to a wide range of
additional applications.

3 NOTATION AND STRUCTURED
LINEAR MODELS

Bold-faced lower-case letters, such as x, represent column
vectors, and bold-faced upper case letters, such as A, rep-
resent matrices. The i-th coordinate of vector x is x(i) and
the i, jth coordinate of a matrix is A is A(i, j). Lower-
case greek letters such as λ represent either vector-valued
or matrix-valued dual variables. We use x(t) for x at iter-
ation t. The term ’constraint’ either refers to a constraint
between scalars or a set of coordinate-wise constraints be-
tween vectors (or matrices). In the latter case, the associ-
ated dual variable is a vector (or matrix).

We consider structured prediction problems defined by



structured linear models such as conditional random fields
(Lafferty et al., 2001) and maximum spanning tree parsers
(McDonald et al., 2005). These assign a score to each pos-
sible output labeling by decomposing each candidate out-
put into a collection of parts, each of which can be active
or inactive in a given labeling. For example, in first-order
dependency parsing, each part corresponds to a single de-
pendency arc (Smith, 2011). In a conditional random field,
there is a part for each possible setting of each clique.

We write the indicator vector for the parts of a specific la-
beling of a datacase k as xk. It is a binary vector with
one coordinate per possible part, which is zero if the part
is not present in the structured output and one if it is. The
model for candidate outputs is called linear because the
score of a given labeling is the dot product 〈wk,xk〉 of a
weight vector wk and the indicator vector over the parts. In
many models, such as conditional random fields, the score
of each part is a function of some observed features, and in
many cases this mapping from features to weights is also
linear. We focus only on inference, however, and make no
assumptions about how the weights are set. In non-trivial
structured linear models, not all assignments of values to
these parts are valid, since they typically represent some
over-complete view of the structured output or are subject
to global structural constraints, such as projectivity for de-
pendency parsing (Smith, 2011). For an instance k we refer
to the set of valid assignments to parts as Uk.

We refer to the problem of finding the highest-scoring valid
collection of parts as MAP inference:

max
xk

〈wk,xk〉 s.t. xk ∈ Uk.

4 DUAL DECOMPOSITION

Following Sontag et al. (2011); Rush & Collins (2012); Ko-
modakis et al. (2007), we consider the problem:

max
x

∑
k

〈wk,xk〉 (1)

s.t. ∀k xk ∈ Uk (2)∑
k

Akxk = 0, (3)

where each xk represents the vector of parts for a specific
structured linear ’submodel.’ The formulation can easily
be adapted to account for a nonzero right hand side of (3).
If (3) did not exist, the problem would reduce to indepen-
dent MAP inference in each subproblem.

Dualizing the linear constraints in (3), but not the xk ∈ Uk
constraints, results in the Lagrange dual problem:

min
λ
D(λ) =

∑
k

max
xk∈Uk

〈
wk +AT

k λ,xk
〉
. (4)

Algorithm 1 Dual Decomposition with Subgradient De-
scent

1: λ← 0
2: while has not converged do
3: for submodel i do
4: x∗k ← maxxk∈Uk

〈
wk +AT

k λ,xk

〉
5: λ← λ− η(t)

∑
k Akx

∗
k

The dual objective D(λ) is convex and piece-wise linear,
as it is the sum of the supremum of linear functions of λ,
and hence can be solved with known convex optimization
techniques, including subgradient methods. Any particular
element of the subgradient of the dual function with respect
to λ can be written as

∂D(λ) =
∑
k

Akx
∗
k, (5)

where each x∗k is some maximizer of a MAP inference
problem with shifted weights:

x∗k ∈ argmax
xk∈Uk

〈
wk +AT

k λ,xk
〉
. (6)

We consider cases, where these MAP subproblems are
tractable and solving their linear programming relaxations
returns an integral value for any weight vector. Therefore,
one can use subgradient descent, Algorithm 1, to minimize
the dual problem. Subject to conditions on the sequence of
step sizes η(t) and the feasibility of the constraints that link
the subproblems, the subgradient method is guaranteed to
converge to the optimum, where (3) will be satisfied (Nes-
terov, 2003; Sontag et al., 2011).

5 SOFT DUAL DECOMPOSITION

5.1 PROBLEM STATEMENT

This paper focuses on applications of dual decomposition
where the underlying prediction problem has at least two
distinct sets of outputs x1 ∈ U1 and x2 ∈ U2, and linear
constraints are imposed between them not as a requirement
to define feasible outputs, but as an extra layer of modeling
to encourage global regularity of the outputs. This contrasts
with problems with a single output x subject to the linear
constraints x ∈ U1∩U2, and while these are unmanageable
directly, U1 and U2 can each be handled in isolation. Here,
dual decomposition can be employed via a copy variable
x2, and constraints x ∈ U1, x2 ∈ U2, and x1 = x2 (Koo
et al., 2010; Rush & Collins, 2012). The first family is pre-
cisely where it can make sense to employ soft constraints,
since they will not threaten the output’s feasibility.

Anzaroot et al. (2014) recently performed MAP with soft
constraints by performing projected gradient descent in a
box-constrained dual objective. Our message passing algo-
rithm requires using a slightly more restrictive set of global



constraint structures to be converted into soft constraints
than what they considered, which are of the form (3).
Specifically, we assume the global constraints decompose
into sets of pairwise equality constraints between compo-
nents of submodels:

max
x

∑
k

〈wk,xk〉 (7)

s.t. ∀k xk ∈ Uk (8)
∀(Ap,Bp, p1, p2) ∈ P Apxp1 = Bpxp2 .(9)

A given product Apxp1 or Bpxp2 is allowed to appear in
multiple p ∈ P , so P effectively defines a collection of
linear measurements of the structured output and a graph
of equality constraints among them. These can be defined
over differently-size mapping matrices. Define sp to be the
length of the vector Apxp1 (also the length of Bpxp2 ).

Defining a dual variable λp ∈ Rsp for every p ∈ P , we
have the following convex dual decomposition objective:

∑
k

max
xk

〈
wk +

∑
p:p1=k

AT
p λ

p −
∑
p:p2=k

BT
p λ

p,xk

〉
.

(10)

A soft constraint formulation of (7) with penalty matrices
cp ∈ Rsp×sp subtracts a penalty of cp(i, j) from the score
of the global MAP problem whenever Apxp1 is set to value
i and Bpxp2 is not set to value j. In the subsequent expo-
sition, we leave the constraints xk ∈ Uk implicit, since we
assume we have available black-box algorithms for maxi-
mizing over these constraint sets. Therefore, we have:

max
x

∑
k

〈wk,xk〉 −
∑
p

∑
i,j

cp(i, j) [Apxp1(i)−Bpxp2(j)]+

(11)

where [·]+ = max(0, ·). Using a matrix-valued penalty is
important in order to support a mapping between arbitrary
graphical model factors and soft constraints (see Section 8).
In Section 7.1, we consider diagonal cp, which are suffi-
cient for the model to penalize when certain components of
the structured output do not take on the same value.

An alternative to (11) for expressing soft constraints is to
create copies of both of the terms appearing in each p ∈ P
and enforce the constraints that terms equal their copy:

max
x

∑
k 〈wk,xk〉 −

∑
p

∑
i,j cp(i, j) [vp(i)− up(j)]+

s.t. ∀p ∈ P Apxp1 = vp, Bpxp2 = up. (12)

Here, the second term is not a structured linear model, but
it is concave, can be handled efficiently in isolation, and

has integral optima. Therefore, we can apply standard dual
decomposition techniques. In Figure 2, we demonstrate
how Rush et al. (2012) similarly use variable copying to
make MAP tractable with dual decomposition. Rather than
employing pairwise hinge losses as auxiliary submodels,
they introduce a single tree-structured graphical model with
pairwise factors that encourage agreement. In Section (10)
we use this as a baseline to demonstrate the deficiencies of
using variable copying to implement soft constraints.

5.2 DUAL OBJECTIVE AND BOX CONSTRAINTS

Problem (11) can be rewritten as a linear program by intro-
ducing matrices of auxiliary variables zp ∈ Rsp×sp :

max
x,z

∑
k 〈wk,xk〉 −

∑
p

∑
i,j cp(i, j)zp(i, j) (13)

s.t. ∀(i, j), zp(i, j) ≥ Apxp1(i)−Bpxp2(j) (14)
zp ≥ 0

This problem is well-defined only if cp is non-negative in
every coordinate. In this case, we have that problems (11)
and (13) have the same optimal value and maximizing x.

We defer a full derivation of the associated Lagrange dual
problem for (13) to Appendix 1, since it parallels Anza-
root et al. (2014). The dual is similar to (10) , but imposes
coordinate-wise box constraints:

min
ν

∑
k

max
xk

〈
wk+

∑
p:p2=k

BT
p ν

T
p 1−

∑
p:p1=k

AT
p νp1,xk

〉
s.t. 0 ≤ νp ≤ cp. (15)

Unlike for hard constraints, we have a matrix-valued dual
variable νp ∈ Rsp×sp+ for every p ∈ P , where νp(i, j) cor-
responds to the constraint in (14) for a particular (i, j), and
R+ denotes the non-negative real numbers. We use 1 to be
a column vector of all ones, where its length is determined
by the context.

These box constraints exist for the same reason that they
occur in the dual problem for soft-margin SVMs (Cortes
& Vapnik, 1995), since the second term in (11) is a sum
of negative hinge losses. The box constraints on the dual
variables ν can be interpreted as the Lagrangian penalizing
the violation of constraints, but only so much as the primal
problem would penalize their violation.

The only qualitative difference between the dual problems
in (15) and (4) is the box constraints. Therefore, we can
employ the projected subgradient method, shown in Algo-
rithm 2, which will converge to the global MAP optimum if
P is feasible. At the end of Appendix 1, we derive the fol-
lowing complementary slackness criteria used for detecting
convergence. These will hold for every p ∈ P and ev-
ery coordinate pair (i, j) when maximizing over the primal
variables:



Algorithm 2 Projected subgradient soft dual decomposi-
tion for general matrix-valued soft constraint penalties.

1: ν ← 0
2: while has not converged do
3: for submodel k do
4: w̃k ← wk +

∑
p:p2=k

BT
p ν

T
p 1−

∑
p:p1=k

AT
p νp1

5: x∗k ← max
xk∈Uk

〈w̃k,xk〉

6: for soft constraint p ∈ P do
7: νp(i, j) ← min(cp(i, j),max(0,νp(i, j) −
η(t)(Apx

∗
p1(i)−Bpx

∗
p2(j))))

either Apx
∗
p1(i) = Bpx

∗
p2(j) (16)

or Apx
∗
p1(i) = 1 and νp(i, j) = 0

or Apx
∗
p1(i) = 0 and νp(i, j) = cp(i, j).

6 MAX-MARGINALS AND MPLP

Using the subgradient method in Algorithm 2 is undesir-
able due to its sensitivity to step-size schedule and slow
convergence in practice. In response, we now revisit hard-
constraint dual objectives of the form (10) in order to ex-
plore previous use of block coordinate descent, which is
parameter-free. We introduce an adaptation of the MPLP
algorithm (Globerson & Jaakkola, 2007) to problems with
general structured linear models as subproblems, and em-
phasize a primal-dual interpretation of the algorithm’s up-
dates, which we will draw on when we derive our new al-
gorithm in the following section.

MPLP is a convergent alternative to max-product belief
propagation that was shown in Sontag et al. (2011) to be
performing block coordinate descent in a dual decompo-
sition objective for a certain instance of (10). Specifically,
there is a submodel for every node and every factor in a fac-
tor graph, and an element p ∈ P between every node and
every factor that it touches. MPLP generalizes to additional
cases (10) when the elements of P satisfy the following
condition, and when the subproblems admit efficient com-
putation of max-marginals, defined below.

Definition Let ej denote the vector that is all zeros, except
for a one in the jth coordinate. We say that the product
Axk is a projection variable if it satisfies the following
property:

∀xk ∈ Uk, ∃j s.t. Axk = ej . (17)

Unlike the previous subgradient algorithms, MPLP re-
quires every element of P to be defined between projec-
tion variables, which can be used to represent any set of
mutually-exclusive states of the structured output. This is

not a strong restriction, as they can be used, for example, to
zoom in on a specific graphical model node or dependency
parse arc and to optionally further coarsen the values of
these individual outputs. Also, the hinge loss of the previ-
ous section and 0-1 loss are equivalent for projection vari-
ables, so we are truly penalizing the event that a constraint
is violated, and not imposing a linear penalty on the de-
gree to which it is violated. Defining projection variables
is necessary because MPLP requires max-marginals, and
the following definition is only well-posed for projection
variables:

Definition For a given projection variable Axk and weight
vector w, the max-marginals mA

w are a vector where the jth
component is given by best possible score achievable by a
valid structured output when the projection variable takes
on value j, i.e.,

mA
w(j) = max

xk∈Uk
〈w,xk〉 s.t. Axk = ej . (18)

For a MAP assignment x∗ with respect to w, we have

Ax∗ = ei∗ , where i∗ = argmax
i

mA
w(i). (19)

In other words, locally maximizing max-marginals is
equivalent to finding a globally-optimal value (unless there
are ties in the max-marginals).

Furthermore, max-marginals change linearly with respect
to changes to w in the direction of their projection variable:

mA
w+ATα(i) = mA

w(i) + α(i). (20)

For example, if we shift the scores for a given factor in
a graphical model by a vector α, and otherwise leave the
model’s potentials unchanged, then the max-marginals for
this factor increase by exactly α. This fact, proven in Ap-
pendix 2, applies to arbitrary projection variables, and is
crucial in deriving both MPLP and our new algorithm in
the next section.

In Algorithm 3, we consider a version of MPLP where
block coordinate descent is performed by iteratively se-
lecting an element p ∈ P and updating the vector-valued
dual variable λp. Note this differs from the algorithms
in Globerson & Jaakkola (2007) and Sontag et al. (2011)
slightly because we pass messages (i.e., dual variables) di-
rectly between submodels, rather than from submodels to
primal variables and from primal variables to submodels.
This results from the fact that we pose (10) via equality
constraints between different parts of the structured output,
not between variables and their copies (Werner, 2008).

We discuss the optimality of this choice of λp in more de-
tail in Appendix 3, which presents a different primal-dual
argument than Sontag et al. (2011), in order to motivate
the techniques used by the new algorithm that we will in-
troduce later. The high level idea is to invoke (20) to ob-
serve that the chosen value for λp shifts the subproblems’



Algorithm 3 An adaptation of the MPLP algorithm of Son-
tag et al. (2011) to dual decomposition with pairwise con-
straints between general structured linear submodels.

1: λ← 0
2: converged← false
3: while (! converged) and (iteration < maxIterations) do
4: converged← true
5: for equality constraint p ∈ P do
6: w̃p1 ← wp1 +

∑
p′:p′1=p1

p′ 6=p

AT
p′λp′ −

∑
p′:p′2=p1

p′ 6=p

BT
p′λp′

7: m1 ← MaxMargs (w̃p1)

8: w̃p2 ← wp2 +
∑

p′:p′1=p2
p′ 6=p

AT
p′λp′ −

∑
p′:p′2=p2

p′ 6=p

BT
p′λp′

9: m2 ← MaxMargs (w̃p2)
10: if (argmaxi m1(i) ∩ argmaxi m2(i) = ∅) then
11: converged← false

12: λp ←
1

2
(m1 −m2)

weights such that max-marginals for the two projection
variables in p become identical in all coordinates. There-
fore, with this setting of the dual variables, it is feasible to
achieve the equality Apxp1 = Bpxp2 when maximizing
over the primal variables. As a result, by strong duality, the
dual of (7) is minimized with respect to λp, since the primal
constraints for this block are satisfied. Algorithm 3 moni-
tors convergence by checking if all constraints are satisfied
when maximizing over the primal variables. See Sontag
et al. (2011) for a discussion of the convergence guarantees
of MPLP and Meshi et al. (2012) for its convergence rate.

The algorithm may require multiple passes to converge,
since updates for one λp may break the above optimality
condition for other p ∈ P . Furthermore, every time the
dual variables are updated for some p ∈ P , max-marginals
need to be recalculated for subproblems p1 and p2. MPLP,
and the algorithm in the next section, can not be applied for
constraints between projection variables in the same sub-
model, since their max-marginals interact with each other.
Therefore, it could not have been applied in the hard con-
straint experiments of Anzaroot et al. (2014), since they im-
pose constraints within a chain-structured graphical model.

7 MESSAGE PASSING FOR SOFT
CONSTRAINT DUAL
DECOMPOSITION

We now introduce the primary contribution of the paper: a
general dual block coordinate descent framework for min-
imizing the box-constrained dual objective (15) and Box-
MPLP, a novel algorithm for solving a common special
case of the problem. Naively applying the MPLP updates
may violate the box constraints, and we can not simply fol-
low them with a projection step, as this will not guarantee
a decrease in the dual objective.

Analogous to Algorithm (3), our block coordinate descent
steps update one vector νp at a time. Since we now focus on
a specific p ∈ P , we define y1 := Apxp1 y2 := Bpxp2 .
While MPLP is a purely dual algorithm, i.e., the update
to λp in Algorithm 3 line 12 does not require reasoning
about optimal settings of the corresponding primal vari-
ables, Box-MPLP requires explicitly constructing a primal-
dual pair.

The algorithm has two overall steps (a) fixing all dual vari-
ables besides νp, define a small block-specific optimization
problem, and efficiently determine what the optimal values
y∗1 and y∗2 should be for it, and (b) construct a value for ν∗p
for which maximizing over the primal variables yields the
values determined in step (a) and satisfies the complemen-
tary slackness conditions (16) (a). Therefore, by construc-
tion of a primal-dual certificate, ν∗p minimizes the block
coordinate descent objective.

In step (a), we seek primal optimizers y∗1 and y∗2 . With all
dual variables besides νp fixed, MAP inference in the sub-
problems p1 and p2 is with respect to shifted weight vectors
w̃p1 and w̃p2 as defined in Algorithm 3 lines 6 and 8 (which
doesn’t include νp in the shift). Using (19) we can reduce
the choice of y∗1 and y∗2 to a local optimization problem
by obtaining max-marginals m1 and m2 for the subprob-
lems, as in Algorithm 3 lines 7 and 9. With these, we have
(y∗1,y

∗
2) = (ei∗ , ej∗), where

(i∗, j∗) = argmax
(i,j)

m1(i) +m2(j)−
∑
j′ 6=j

cp(i, j
′). (21)

Step (b) constructs a ν∗p that satisfies (16) and for which
optimizing over the primal variables yields (y1,y2) =
(i∗, j∗). Invoking the ‘linearity’ of max-marginals (20),
this can be expressed as the following conditions on νp:

∀i, m1(i
∗)−

∑
j

νp(i
∗,j) ≥ m1(i)−

∑
j

νp(i,j) (22)

∀j, m2(j
∗)+

∑
i

νp(i,j
∗) ≥ m2(j)+

∑
i

νp(i,j). (23)

Satisfying (16) along with (22) and (23) ensures that
the independent maximizations of the reweighted problems
will have the same score and same maximizing values as
the joint maximization in equation (21), and thus we have
a primal-dual pair for the coordinate descent subproblem.

Solving the maximization in (21) can be done, in the worst
case, by enumerating all s2p possible i and j. Selecting νp
that satisfies conditions (16), (22), and (23) requires solv-
ing a linear feasibility problem, however. While this can
be done in time polynomial in sp, we focus in the next sec-
tion on an important special case where it is particularly
tractable, and leave exploration of general algorithms for
this feasibility problem to future work.



7.1 AGREEMENT FACTORS

Next, we focus on a particular structure of cp that is both
reasonable for applications and for which finding νp satis-
fying (16), (22), and (23) can be done in time O(sp). This
results in the block coordinate descent Algorithm 4.

Definition Let y1 and y2 be two projection variables with
values i and j, and define vector α ∈ Rsp+ . An agreement
factor between y1 and y2 is a structured linear model that
assigns a score of 0 if they agree and a score of −α(i) if
they disagree. This is equivalent to a penalty matrix:

cp(i, j) =

{
α(i) if i = j
0 otherwise. (24)

For many applications, it is sufficient to use agreement fac-
tors rather than full matrix penalties cp(i, j), since they al-
low the model to impose a penalty if two components of the
structured output are not equal. This, for example, supports
the soft constraints of Rush et al. (2012) that we employ in
our experiments. However, we show in Section 8 that ma-
trix penalties are important to support a mapping between
general graphical model factors and soft constraints.

Given the structure (24) on the penalties, there are effec-
tively only sp dual variables in the matrix νp, as the off-
diagonal elements are constrained to be equal to 0 by the
box constraints (15). We refer to the dual variable and costs
as νp(i) and cp(i), and equations (22) and (23) reduce to

m1(i
∗)− νp(i

∗) ≥ m1(i)− νp(i) ∀i, j (25)
m2(j

∗) + νp(j
∗) ≥ m2(j) + νp(j) ∀i, j (26)

In Appendix 4 we derive an O(sp) method for choosing
νp that satisfies (16), (22), and (23). The overall insight
is that (25) and (26) can be manipulated to yield simple
upper and lower bounds on feasible values of νp(i) for
i 6= i∗, j∗, for which we choose the midpoint of the fea-
sible interval (Algorithm 4, line 22). Also, if i∗ 6= j∗, then
νp(i

∗) and νp(j
∗) are determined by complementary slack-

ness (line 18) and otherwise, we can set them by similarly
taking the mid-point of a feasible interval obtained from
(25) and (26) (line 15). If we make the further restriction
that the agreement factor uniformly penalizes disagreement
between values of y1 and y2, i.e. cp is α in all coordinates,
then we have the added benefit that Algorithm 4 line 11 can
be solved in O(sp) time. See the end of Appendix 4.

8 SOFT CONSTRAINTS V.S. FACTORS

As identified in the introduction, a traditional way to model
soft constraints is to add global factors to a graphical
model. In this case, the factors contribute scores when
variables are set to certain values, which differs from our

Algorithm 4 Box-MPLP: block coordinate descent for soft
dual decomposition with agreement factors.

1: converged← false
2: while !converged do
3: converged← true
4: for constraint p ∈ P do
5: w̃p1 ← wp1 +

∑
p′:p′2=p1

p′ 6=p

BT
p′νp′ −

∑
p′:p1=p1

p′ 6=p

AT
p′νp′

6: m1 ← MaxMargs (w̃p1)

7: w̃p2 ← wp2 +
∑

p′:p′2=p2
p′ 6=p

BT
p′νp′ −

∑
p′:p1=p2

p′ 6=p

AT
p′νp′

8: m2 ← MaxMargs (w̃p2)
9: if (16) not satisfied then

10: converged← false
11: i∗, j∗ ← argmax

i,j
m1(i) +m(j)− cp(i)δ(i6=j)

12: if i∗ = j∗ then
13: U ← mini6=i∗m1(i

∗)−m1(i)
14: L← maxj 6=j∗m2(j)−m2(j

∗) + cp(j)
15: νp(i

∗)← 1
2
(U + L)

16: else
17: νp(i

∗)← 0
18: νp(j

∗)← cp(j
∗)

19: for all i such that i 6= i∗, i 6= j∗ do
20: L← −m1(i) +m1(i

∗) + νp(i
∗)

21: U ← m2(j
∗)−m2(j) + νp(j

∗)
22: νp(i)← 1

2
(U + L)

use of penalties that contribute negative score when vari-
ables are not set to certain values. We prove in Appendix
5 that the expressivity of factors and our soft constraints
are equivalent, though, as long as the soft constraints are
defined between projection variables. Specifically, any ta-
ble of factor scores can be mapped into a penalty matrix cp
by solving an associated linear system. This may require
using Algorithm 2 for inference, though, since Box-MPLP
only applies to diagonal cp.

Though the two formulations are similar, soft constraints
have attractive properties compared to factors. For exam-
ple our algorithms maintain primal feasibility during inter-
mediate iterations and avoid variable copying, which frac-
tures the evidence for variables’ MAP values across sub-
models and requires an entire dual decomposition iteration
for information to travel between output variables and their
copies. Our experiments support the desirability of avoid-
ing variable copying. In future work, we will explore solv-
ing problems that are natively expressed using factors by
first mapping them to problems with soft constraints.

9 RELATED WORK

There is a precedent for constructing message passing
schemes for inference problems by minimizing an asso-
ciated dual problem that decomposes into local interac-
tions (Wainwright et al., 2005; Komodakis et al., 2007;



Globerson & Jaakkola, 2007; Ravikumar et al., 2010; Mar-
tins et al., 2012; Schwing et al., 2012). Many of these
are based on block coordinate descent. The generaliza-
tions we make in Section 6, such as working in terms of
projection variables to make MPLP apply to more gen-
eral structured prediction problems than graphical models,
could also be applied to a variety of these other algorithms,
where the requirement that the subproblems yield max-
marginals would be replaced with other requirements, such
as the ability to perform MAP in the presence of additional
strongly-convex terms. Our algorithm, particularly in the
context of the application we consider in the next section,
can also be seen as an example of special-case handling of
factors that have a specific combinatorial structure (Duchi
et al., 2007; Martins et al., 2012; Mezuman et al., 2013).

Our message passing algorithm has the same optimality
guarantees as those for MPLP discussed in Sontag et al.
(2011). Unlike (projected) subgradient descent, block co-
ordinate descent may return sub-optimal outputs because
our objective is non-smooth and not strongly convex (Luo
& Tseng, 1992). Analysis of the convergence rate for
smoothed versions of MPLP (Meshi et al., 2012) is doable,
however, and we encourage exploration of (smoothed) par-
allel versions of Box-MPLP (Richtárik & Takáč, 2012).

10 EXPERIMENTS

We evaluate soft constraint algorithms that vary along two
dimensions: whether they solve box-constrained dual de-
composition objectives or unconstrained ones based on
variable copying and whether they employ (projected) sub-
gradient descent or block coordinate descent. The first di-
mension is captured by the distinction between Figure 1,
where the consensus variable at the top is an isolated struc-
tured linear model and there are soft constraints between
this and the variables in the sentences, and Figure 2, which
requires variable copying and an auxiliary tree-structured
submodel. While Rush et al. (2012) did not employ MPLP,
max-marginals can be obtained for the CRF tagger and pro-
jective parser they used (Smith, 2011). Also, note that the
soft constraint penalties of Rush et al. (2012) used in both
figures take the form of agreement factors. Therefore, we
can apply Box-MPLP. We compare:

• Subgradient: Algorithm 1 applied to Figure 2
• Box-Subgradient: Algorithm 2 applied to Figure 1
• MPLP: Algorithm 3 applied to Figure 2
• Box-MPLP: Algorithm. 4 applied to Figure 1

The specific problem considered by Anzaroot et al. (2014)
problem does not admit a baseline algorithm that uses
variable copying and hard-constraint dual decomposition.
Therefore, besides providing experimental evidence for the
effectiveness of Box-MPLP, we also seek to demonstrate
the overall effectiveness of using a box-constrained objec-
tive for soft dual decomposition as an alternative to variable
copying, regardless of what inference algorithm is used for

minimizing the box-constrained objective. Finally, note
that all algorithms provide an O( 1√

t
) convergence rate, so

they can only be compared empirically.

We mirror the experimental setup of Rush et al. (2012) for
both tagging and parsing. To measure the speed of the
algorithms, we record the total number of calls to infer-
ence in sentence-level problems, which we normalize by
the number of sentences in the corpus to facilitate com-
parison across experiments. After the first pass, we only
perform inference when relevant dual variables change.

Measuring inference calls rather than wall-clock time
yields a more reliable experimental setting for the follow-
ing two reasons: (1) it is independent of the implementa-
tion used, and (2) it allows us to be generous to the base-
line algorithms we seek to outperform. First, we ignore the
cost of running MAP inference in the tree-structured auxil-
iary problem in Figure 2. Second, we assign a pessimistic
multiplier of two for all inference calls that require max-
marginals. For NLP models with millions of features, this
is an exaggeration because computing the model’s score
vector w is typically the most costly step.

10.1 POS TAGGING

Figure 3: Accuracy (top) and dual objective (bottom) v.s.
runs of sentence-level inference for WSJ-200 POS tagging.
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Following Rush et al. (2012), we learn models on subsets
of 50, 100, 200, and 500 sentences from the first chapter
of the Penn Treebank and test on the Penn Treebank chap-
ters test set (Marcus et al., 1993). We use a bigram CRF
tagger (Lafferty et al., 2001). For all experiments, we re-
port average sentence-level accuracy and the gains we ob-
tain from corpus-wide inference in Appendix 6. Both are
consistently comparable to Table 4 of Rush et al. (2012).



Table 1: Normalized number of inference runs for each al-
gorithm to attain quantiles of the best dual solution in the
WSJ-200 tagging experiment. If a quantile was not reached
during 100 iterations, we show ‘na’.

Accuracy quantile 80% 85% 90% 95%
Subgradient 70 92 na na
MPLP 22 23 25 30
Box-Subgradient 20 35 40 54
Box-MPLP 8 9 10 10
Dual Quantile 80% 85% 90% 95%
Subgradient 24 34 56 na
MPLP 21 22 23 35
Box-Subgradient 30 35 40 54
Box-MPLP 7 7 8 9

We present results from where we train on 200 sentences,
but they are representative of the others, given in Appendix
6.1. Figure 3 shows the corpus-wide tagging accuracy and
dual objective as a function of the sentence-level MAP
calls. Recall that we double-count all calls to max-marginal
routines. Table 1 shows how much inference is neces-
sary to reach various percentile gains in accuracy and per-
centile reductions in the dual objective. Box-MPLP sub-
stantially outperforms both Box-Subgradient and MPLP,
and the box-constrained versions of both algorithms out-
perform their variable-copying-based counterparts. Com-
pared to the baseline subgradient algorithm used by Rush
et al. (2012), we require 10x fewer MAP calls.

10.2 DEPENDENCY PARSING

Table 2: Iteration costs for the parsing experiments.
PTB to QTB
Accuracy quantile 80% 85% 90% 95%
Subgradient 4.1 4.3 5.2 6.1
MPLP 4.3 4.3 4.3 ‘na’
Box-Subgradient 2.1 2.1 2.4 2.8
Box-MPLP 2.6 2.8 3 ‘na’
Dual quantile 80% 85% 90% 95%
Subgradient 3.0 3.2 3.4 3.9
MPLP 4.2 4.4 4.9 4.9
Box-Subgradient 1.6 1.7 1.8 2.0
Box-MPLP 2.5 2.5 2.5 2.6
QTB to PTB
Dual quantile 80% 85% 90% 95 %
Subgradient 15 16 18 22
MPLP 14 15 16 17
Box-Subgradient 8.1 9.2 10 12
Box-MPLP 6.9 7.4 7.9 8.6

Our corpus-wide parsing experiments present a character-
istically different regime for comparing the four algorithms
because the graph of connections between the subproblems
is much more sparse and the overall number of necessary
iterations for the algorithms to converge is much lower.

Following Rush et al. (2012), each set of POS tags around
a token defines a context, and identical contexts are encour-

aged to have parents with similar POS tags by introducing
various consensus structures. We mirror their domain adap-
tation experiments, training on the Penn Treebank (PTB)
and testing on the Question Treebank (QTB), and vice-
versa (Judge et al., 2006). We parse with a first-order pro-
jective arc-factored parser (McDonald et al., 2005) using
dynamic programming for inference, which has lower ac-
curacy than the second-order projective parser used in Rush
et al. (2012). Table 2 summarizes our results.

In the PTB-to-QTB experiment, the box-constrained algo-
rithms uniformly outperform their counterparts based on
variable copying. Unlike our POS experiments, however,
Box-MPLP does not outperform Box-Subgradient. Since
all the algorithms converge so quickly, the extra computa-
tion to obtain max-marginals is too costly (in the factor-
2 scheme). Box-MPLP is still about 2x faster than Sub-
gradient, which is what Rush et al. (2012) used, though.
For the QTB-to-PTB experiment we were unable to repro-
duce accuracy increases as reported in Rush et al. (2012);
none of the optimization algorithms managed to improve
the accuracy for any setting of the penalties. This is prob-
ably due to our simpler parser. However, regarding dual
optimization, each coordinate descent method outperforms
its corresponding subgradient method, and the boxed al-
gorithms outperform their variable-copying alternatives.
Again, Box-MPLP was about 2x faster than Subgradient.
See Appendix 6.2 for accuracy and dual figures.

11 CONCLUSION AND FUTURE WORK

Soft constraints can be easily modeled by imposing box
constraints on an associated dual decomposition objective.
This yields fast, simple-to-implement algorithms. Box-
MPLP, a block coordinate descent algorithm, provides a
competitive alternative to projected subgradient descent.

Future work will explore ways to adapt the alternative mes-
sage passing algorithms discussed in Section 9 to handle
box constraints and consider additional combinatorial fac-
tors besides soft constraints that can be ‘optimized out’ by
imposing constraints in an associated dual problem.
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