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Abstract

In this paper, we show how the connections
between max-product message passing and
linear programming relaxations for MAP al-
low for a more efficient exact algorithm than
standard dynamic programming. Our pro-
posed algorithm uses column generation to
pass messages only on a small subset of the
possible assignments to each variable, while
guaranteeing to find the exact solution. This
algorithm is more than two times faster than
Viterbi decoding for part-of-speech tagging
on WSJ data and equivalently fast as beam
search with a beam of size two, while being
exact.

The empirical performance of column gener-
ation depends on how quickly we can rule out
entire sets of assignments to the edges of the
chain, which is done by bounding the contri-
bution of the pairwise factors to the score of
the solution. This provides an opportunity
at the intersection of inference and learning:
at training time, we can regularize the model
in a way that makes inference faster without
changing its structure.

1. Introduction

Many basic tasks in natural language processing—
part-of-speech tagging, named entity recognition,
noun-phrase chunking, and others—are often ap-
proached with linear-chain conditional random fields
(Lafferty et al., 2001). Maximum a posteriori (MAP)
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decoding in these graphical models is known to be
O(nk2), where k is the number of labels for each to-
ken and n is the length of the sequence, which can
be expensive especially when processing large amounts
of data. Even though training is known to fail to
converge when using approximate inference (Kulesza
et al., 2007) and approximate search at test time can
decrease accuracy, most actual implementations use
beam search or other approximations instead of exact
inference for performance reasons.

While there are known costs to these approximate ap-
proaches in general, most of the time exact solutions
are actually recovered with approximate search, at a
much smaller computational cost than standard exact
inference. This is true because in most linear-chain
models many tagging decisions can be safely made
based on local information, and transition scores are
only necessary to disambiguate between states that ap-
pear equally reasonable in the absence of contextual in-
formation. It is desirable to directly exploit this prop-
erty by performing efficient local decoding and then
expanding the transition factors only when necessary,
while still returning exact results.

In this paper we show how an approach based on de-
layed column generation for the LP relaxation of the
MAP decoding problem in linear chains leads to ex-
actly this behavior, where most decisions are made
locally and yet the inference process is provably exact.
Moreover, as the performance of this search algorithm
depends precisely on making local decisions, regulariz-
ing the model to minimize the magnitude of the tran-
sition scores leads to even faster inference, effectively
learning to search faster.



Speeding up MAP with Column Generation and Block Regularization

2. Delayed column generation in linear
programs

Column generation is a method for exactly solving lin-
ear programs with a large number of variables. It
works by restricting the problem to a subset of its
variables1 (implicitly setting the others to zero) and
alternating between solving this restricted linear pro-
gram and selecting which variables should be added
to it, based on whether they could potentially improve
the objective. If no variables can improve the objec-
tive, one has a primal-dual pair which is optimal for
the original, unrestricted, linear program.

The keys to column generation, then, are the method
by which variables are added to the linear program and
the test that no additional variable could potentially
improve the objective. This criterion, based on the no-
tion of reduced cost, is the same criterion often used for
pivoting in the simplex algorithm (Bertsimas & Tsit-
siklis, 1997; Lubbecke & Desrosiers, 2004). The differ-
ence between the algorithms is that simplex relies on
the primal variables being enumerated explicitly, while
column generation leaves them implicitly defined and
“generates” them only as needed. This does not guar-
antee that column generation will scale better than
simplex, however, since in the worst case all variables
will be added to the restricted primal problem.

Consider the general LP:

max. cTx s.t. Ax ≤ b, x ≥ 0 (1)

With corresponding Lagrangian:

L(x, λ) = cTx+ λt (b−Ax) =
∑
i

(
ci −ATi λ

)
xi + λtb

(2)

For a given assignment to the dual variables λ, a vari-
able xi is a candidate for being added to the restricted
problem if its reduced cost ri = ci − ATi λ, the scalar
multiplying it in the Lagrangian, is positive. Another
way to justify this decision rule is by considering the
constraints in the LP dual:

min. bTλ s.t. ATλ ≥ c λ ≥ 0 (3)

Here, the reduced cost of a primal variable equals the
degree to which its dual constraint is violated, and thus
column generation in the primal is equivalent to cut-
ting planes in the dual (Lubbecke & Desrosiers, 2004).
Note that if there is no variable of positive reduced
cost then the current dual variables from the restricted

1Here we refer to variables in the linear program, which
are not the same as variables in the model.

problem are feasible in the unrestricted problem, and
thus we have a primal-dual optimal pair, and can ter-
minate column generation.

3. Linear programming for MAP
inference in chains

For any Markov random field whose graph is a tree the
MAP inference problem can be formulated as a linear
programming problem, where one maximizes the sum
of the scores assigned by the model’s factors to all vari-
ables and adjacent pairs of variables, subject to the
assignment being contained in the marginal polytope,
which for tree graphs is equivalent to marginals over
nodes summing to one and marginals over edges be-
ing consistent with the node marginals (Wainwright &
Jordan, 2008). Performing message-passing for max-
product belief propagation on this graph can be shown
to be equivalent to computing a set of optimal dual
variables for this linear program. We exploit this con-
nection to design an efficient algorithm for MAP infer-
ence based on column generation.

We focus on inference in models that are chain-
structured, a special case of trees. A chain model over
variables V1, . . . , Vn can be expressed in terms of local
factors θi(xi), where xi refers to a setting of variable
i, and pairwise transition factors τi(xi, xi+1). Follow-
ing Wainwright & Jordan (2008), we write the MAP
inference problem as the following LP:

max.
∑
i,xi

µi(xi)θi(xi)

+
∑
i

∑
xi,xi+1

µi(xi, xi+1)τi(xi, xi+1)

s.t.
∑
xi
µi(xi) = 1∑

xi
µi(xi, xi+1) = µi+1(xi+1)∑

xi+1
µi(xi, xi+1) = µi(xi)

(4)

We refer to the first family of constraints as “normal-
ization” constraints and the other two as “marginal-
ization” constraints.

We can invoke the first marginalization constraint
to combine the local and pairwise scores and re-
place the coefficient of µi(xi, xi+1) in the objective
with (τi(xi, xi+1) + θi+1(xi+1)). Next, by relaxing the
marginalization constraints (but keeping normaliza-
tion as a hard constraint) and grouping all the terms
according to the primal variables they multiply, we
have the Lagrangian L(µ, α, β), equal to

∑
1

µ1(x1)ν1(x1) (5)

+
∑

i,xi,xi+1

µi(xi, xi+1) (νi(xi, xi+1) − νi+1(xi+1))
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This expression is a function of the max-marginals

νi(xi) = αi(xi) + βi(xi) + θi(xi) (6)

νi(xi, xi+1) = αi(xi) + θi(xi) + τi(xi, xi+1) (7)

+θi+1(xi+1) + βi+1(xi+1).

Here, αi(xi) and βi(xi) are dual variables correspond-
ing to the marginalization constraints when variable i
is set to xi. Wainwright & Jordan (2008) show that
the fixed point of the max-product message passing
rules provides an assignment to the dual variables α
and β that, together with decoding based on the max-
marginals form a primal-dual optimal pair for this LP.
The update equations for these messages are as fol-
lows:

αi+1(xi+1) = max
xi

αi(xi) + θi(xi) + τ(xi, xi+1) (8)

βi−1(xi−1) = max
xi

τ(xi−1, xi) + θi(xi) + βi(xi). (9)

Note that in the Lagrangian of equation (5) we made
an arbitrary decision to single out the first node in
the chain. An equivalent decision can be made by
choosing the last node, which will be important in the
next section.

4. A column-generation algorithm for
fast chain decoding

In many applications of MAP inference in chains, such
as in text sequence tagging, the graphical model vari-
ables have large domain sizes. Let D be the number of
values that xi can take on and n be the length of the
chain. The LP in Equation (4) would have O(nD2)
variables. Most of the time, however, we can be confi-
dent that many of these variables will not be used in
the final solution, due to the strength of local factors
θi(xi) relative to the pairwise factors τi(xi, xi+1). We
leverage this property by lazily adding variables to the
LP using column generation.

4.1. Deriving the algorithm

We seek to solve the LP for MAP inference in chains
with a column generation strategy. Such a strategy re-
quires efficient components for choosing the initial set
of variables in the restricted LP, solving the restricted
LP, and finding variables of positive reduced cost.

To initialize the LP, we first define for each node in
the graphical model a restricted domain consisting of
only xi = argmax θi(xi). Note that any initialization
strategy is equally valid, and one could, for example,
also add the high-scoring transitions, or add the k best

xi instead of the single best. Next, we include in the
initial restricted LP all the µi(xi) and µi(xi, xi+1) in-
dicator variables corresponding to these size-one do-
mains.

To solve the restricted LP, we use max-product mes-
sage passing, but adapt the recursive definition of
αi(xi) and βi(xi) in equations (8) and (9) to only
search over the restricted domain of a variable’s neigh-
bors in the chain. This can be derived by looking at
the Lagrangian of the LP with all µi(xi) variables but
only a subset of the µi(xi, xi+1) variables, but we omit
this derivation due to space constraints.

For column generation, we need to compute the
reduced costs of each pairwise marginal variable
µi(xi, xi+1) in terms of θ, τ , α, and β. By using the
Lagrangian from equation (5) we get the following re-
duced cost for the pairwise marginals

R′i(xi, xi+1) = νi(xi, xi+1)− νi+1(xi+1)

= τ(xi, xi+1) + θi(xi) (10)

+αi(xi)− αi+1(xi+1).

When we solved the restricted LP, we didn’t allow
xi /∈ Di to take on nonzero values. However, we still
needed to assign values to the dual variables indexed
by xi. We set αi(xi) as defined in equation 8, even for
xi /∈ Di. Doing so does not interfere with the dual op-
timality of the messages passed in the restricted prob-
lem.

Equation (10) has a simple interpretation. αi+1(xi+1)
is defined as a max over the current restricted domain
Di. For xi /∈ Di, the first three terms of R′i represent
the value of αi+1(xi+1), had this maximization used
xi. Therefore, R′i(xi, xi+1) represents the gain in for-
ward message αi+1(xi+1) attainable if xi is added to
restricted domain Di.

Because this reduced cost only involves α variables, it
only considers one direction in the chain when judging
the desirability of a pair of variables. As described in
section 3, our Lagrangian has an inherent asymmetry
where V1 was chosen as the root of the chain. If we had
chosen Vn as the root, our reduced cost would only use
β information. Both of these Lagrangians come from
the same original LP, and have the same optimum.
Therefore, we can average them in order to obtain a
Lagrangian for which the reduced cost contains global
information from both directions. Doing so leads us
to the expression for the reduced cost we’ll use in the
remainder of this paper,

2Ri(xi, xi+1) = 2τ(xi, xi+1) + θi(xi) + θi+1(xi+1)

+ (αi(xi)− αi+1(xi+1))

+ (βi+1(xi+1)− βi(xi)) . (11)
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Algorithm 1 Column Generation Chain MAP

for i = 1→ n do Di = {argmax θi(xi)}
end for
while domains haven’t converged do

(α, β)← GetMessages(D, θ)
for i = 1→ n do

(xi, xi+1, rc)← argmaxRi(xi, xi+1)
if rc > 0 then

Di ← Di ∪ xi
Di+1 ← Di+1 ∪ xi+1

end if
end for

end while

Algorithm 2 Efficient search for a setting with posi-
tive reduced cost
Uτ (·, xi+1)← maxxi τ(xi, xi+1)
Uτ (xi, ·)← maxxi+1

τ(xi, xi+1)
Ui ← maxxi

Ni(xi)
C ′i ← {xi+1|N ′i(xi+1) + Ui + 2Uτ (·, xi+1) > 0}
U ′i ← maxxi+i∈C′

i
N ′i(xi+1)

Ci ← {xi|Ni(xi) + U ′i + 2Uτ (xi, ·) > 0}
(x∗i , x

∗
i+1)← argmaxxi∈Ci,xi+1∈C′

i
R(xi, xi+1)

At every iteration of our column generation procedure,
we find for each position i in the chain the setting of xi
and xi+1 that maximizes the reduced cost Ri(xi, xi+1).
If that reduced cost is positive, that setting of the vari-
ables is added to our domain. If no setting with a
positive reduced cost was found we can prove that we
have an optimal solution. Algorithm 1 shows the pseu-
docode for this approach.

4.2. Finding a state with positive reduced cost

Naively searching for pairwise variables of positive re-
duced cost has the same O(nk2) complexity as stan-
dard Viterbi inference. Therefore, pruning is necessary
when performing this search.

Note that the terms in the reduced cost equation (11)
can be divided into three groups: those that depend
only on xi, Ni(xi) = θi(xi)+αi(xi)−βi(xi), those that
depend only on xi+1 (henceforth N ′i(xi+1)) and the
transition scores τi(xi, xi+1). Henceforth we assume
the transition scores are the same across locations in
the chain, though it is trivial to generalize to the case
where they vary, and it is possible to obtain tighter
bounds while doing that.

Given the decomposition above of the reduced cost we
can develop an efficient searching strategy based on
independent bounds as in Algorithm 2.

This strategy effectively reduces the common-case
complexity of the search for settings with positive re-
duced cost from O(k2) to O(k). Note that this strategy
can be inefficient if the bounds Uτ (xi, ·) and Uτ (·, xi+1)
on the rows and columns of the transition matrix are
loose, which suggests that, during learning, we should
try to keep the transition scores as small as possible.

This is the source of our connection between inference
and learning: by learning to keep the transition scores
small we can effectively learn to search faster. There-
fore, we can obtain an accuracy-speed tradeoff of our
decoding algorithm using block regularization, where
we apply different regularization strategies to the tran-
sition scores and emission scores when training.

5. Related Work
Column generation is a cutting plane algorithm ap-
plied to the dual problem. Cutting planes have been
successfully applied to problems such as training struc-
tured SVMs and improving approximate MAP infer-
ence in loopy graphical models (Tsochantaridis et al.,
2006; Sontag & Jaakkola, 2007). While column gener-
ation has enabled solutions to key operations research
problems, such as those by Gilmore & Gomory (1961)
and Desrochers & Soumis (1989), it is not widely
known in machine learning.

Most related work in methods for decoding chains has
focussed on methods for improving the accuracy of ap-
proximate methods, such as beam search. For exam-
ple, Pal et al. (2006) selected an adaptive beam width
at every variable by ensuring that the marginal distri-
bution captured by the beam was sufficiently close to
the true marginal distribution of the chain variable.

Some prior work has also improved exact decoding of
linear chains. Kaji et al. (2010) presents an efficient
decoding strategy by dividing the set of values for each
node in the chain into two groups, and computing
the messages explicitly for values in one group while
upper-bounding the messages for values in the other
group. Esposito & Radicioni (2007) offered the Car-
peDiem algorithm, which lazily grows the domains of
output variables using bounds on various model scores.

6. Experiments
We perform two sets of experiments. The first explores
the tradeoff between computation time and exact-
ness, by comparing our column-generation approach
to beam search and exact Viterbi inference. The sec-
ond explores the relationship between regularizing the
transition weights and inference efficiency. We trade
off accuracy against time in a characteristically differ-
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Table 1. Timing experiments for joint POS and NER
Algorithm sentences/s % exact

Viterbi 57 100
Column generation 779 100

Beam-1 3717 66.6
Beam-5 995 99.5
Beam-7 772.8 99.7
Beam-10 575.1 99.9

Table 2. Timing experiments for POS.
Algorithm sentences/s % exact

Viterbi 3144 100
Column generation 8227 100

Beam-1 12117.6 57.7
Beam-2 7519 92.6
Beam-3 6802 98.4
Beam-4 5731 99.5

ent fashion than beam search, by learning a model in
which it is easier to search.

6.1. Exploring the exactness versus time
tradeoff

We compare the speed of our algorithm on a stan-
dard part-of-speech tagging task on Wall Street Jour-
nal data (Marcus et al., 1993) (WSJ) and on a joint
part-of-speech tagging and named-entity recognition
task on CoNLL 2003 data.

Table 1 shows the results for joint POS and NER. The
model is a factorial conditional random field with one
linear chain for NER and another for POS tagging
and factors connecting both these chains to each other
and to observed data. Inference was performed on the
cluster graph for this model, in which each variable
can take one out of 360 possible values (45 POS tags
× 8 NER labels). Column generation is about 13 times
faster than Viterbi, and as fast as Beam-7. Whereas
our algorithm is exact, Beam-7 returned the MAP set-
ting for 99.7% of the sentences.

Table 2 shows the results for the POS tagging exper-
iment. The model was trained with 50 iterations of
perceptron on the training set of the Penn Treebank.
Note that the column generation algorithm processed
more sentences per second than beam search with a
beam of size two, which only found the exact MAP
setting 92.6% of the time.

6.2. Exploring the regularization strength
versus time tradeoff

Next, we perform a simple training experiment to illus-
trate the effect of regularizing the transition weights on
inference time. We use a standard part-of-speech tag-
ging conditional random field on for WSJ data trained

Figure 1. The tradeoff between accuracy and inference
time

with the structured SVM algorithm with `2 regulariza-
tion (Tsochantaridis et al., 2006). We place a regular-
ization coefficient of 0.1 on the emission weights and
vary the coefficient on the transition weights from 0.1
to 10. Results are in Figure 1. A 4x gain in speed can
be obtained at the expense of an 8% relative decrease
in accuracy. With balanced block regularization, the
model obtains a tagging accuracy of 96.4%.

7. Conclusions and future work

We present an efficient algorithm for MAP decoding in
linear chains that uses the LP relaxation of the infer-
ence problem to adaptively prune the state-space nec-
essary for exact inference. We also show how adapt-
ing the learning procedure can lead to further speed
benefits of about 4x for a small relative decrease in ac-
curacy. It is easy to generalize this approach to trees,
and in that case instead of averaging two Lagrangians
it is more natural to average one Lagragian per leaf.
This algorithm can also be applied, for example, as a
subroutine in tree block coordinate descent (Sontag &
Jaakkola, 2009), leading to speed improvements with-
out any change in the algorithm’s guarantees.

A limitation of this algorithm is that it currently sup-
ports only local and transition factors. To general-
ize it to factors over trigrams, four-grams, etc., we
only obtain a reduction in complexity from O(kd) to
O(kd−1), which, while significant, is still not practical
for most purposes. However, perhaps by exploiting so-
lutions to the bigram chain decoding model as initial-
ization to higher-order models it might be possible to
break this barrier, and effectively learn exact-inference
analogues to structured prediction cascades (Weiss &
Taskar, 2010), in which much of the hypothesis space
is pruned by lower-order models.
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